A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees

نویسندگان

  • Norishige Chiba
  • Takao Nishizeki
  • Shigenobu Abe
  • Takao Ozawa
چکیده

This paper presents a simple linear algorithm for embedding (or drawing) a planar graph in the plane. The algorithm is based on the “vertex-addition” algorithm of Lempel, Even, and Cederbaum (“Theory of Graphs,” Intl. Sympos. Rome, July 1966, pp. 21>232, Gordon & Breach, New York, 1967) for the planarity testing, and is a modification of Booth and Lueker’s (J. Comput. System Sci. 13 (1976), 335379) implementation of the testing algorithm using a PQ-tree. Compared with the known embedding algorithm of Hopcroft and Tarjan (J. Assoc. Comput. Mach. 21, No. 4 (1974), 549-568), this algorithm is conceptually simple and easy to understand or implement. Moreover this embedding algorithm can find all the embeddings of a planar graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for Testing and Embedding Planar Graphs

2 Embedding graphs into planarity 3 2.1 embedding algorithms donot use PQ-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 A planarity embedding algorithm based on the Kuratowski theorem . . . . . . . . 3 2.1.2 An embedding algorithm based on open ear decomposition . . . . . . . . . . . . . . 3 2.1.3 A simplified o (n) planar embedding algorithm for biconnected graphs . . ....

متن کامل

Planarity Algorithms via PQ-Trees

We give a linear-time planarity test that unifies and simplifies the algorithms of Shih and Hsu and Boyer and Myrvold; in our view, these algorithms are really one algorithm with different implementations. This leads to a short and direct proof of correctness without the use of Kuratowski’s theorem. Our planarity test extends to give a uniform random embedding, to count embeddings, to represent...

متن کامل

An Efficient Parallel Algorithm for Planarity by Philip

We describe a parallel algorithm for testing a graph for planarity, and for finding an embedding of a planar graph. For a graph on n vertices, the algorithm runs in O(log2 n) steps on n processors of a parallel RAM. The previous best algorithm for planarity testing in parallel polylog time ([Ja'Ja' and Simon, 82]) used a reduction to solving linear systems, and hence required fl(n2 49 ) process...

متن کامل

Planarity Testing and Embedding

Universita’ di Roma Tre 3.1 Properties and Characterizations of Planar Graphs . . . . . 2 Basic Definitions • Properties • Characterizations 3.2 Planarity Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.3 History of Planarity Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.4 Common Algorithmic Techniques and Tools . . . . . ...

متن کامل

PC-Trees vs. PQ-Trees

A data structure called PC-tree is introduced as a generalization of PQ-trees. PC-trees were originally introduced in a planarity test of Shih and Hsu [7] where they represent partial embeddings of planar graphs. PQ-trees were invented by Booth and Lueker [1] to test the consecutive ones property in matrices. The original implementation of the PQ-tree algorithms by Booth and Lueker using nine t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Syst. Sci.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 1985