A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees
نویسندگان
چکیده
This paper presents a simple linear algorithm for embedding (or drawing) a planar graph in the plane. The algorithm is based on the “vertex-addition” algorithm of Lempel, Even, and Cederbaum (“Theory of Graphs,” Intl. Sympos. Rome, July 1966, pp. 21>232, Gordon & Breach, New York, 1967) for the planarity testing, and is a modification of Booth and Lueker’s (J. Comput. System Sci. 13 (1976), 335379) implementation of the testing algorithm using a PQ-tree. Compared with the known embedding algorithm of Hopcroft and Tarjan (J. Assoc. Comput. Mach. 21, No. 4 (1974), 549-568), this algorithm is conceptually simple and easy to understand or implement. Moreover this embedding algorithm can find all the embeddings of a planar graph.
منابع مشابه
Algorithms for Testing and Embedding Planar Graphs
2 Embedding graphs into planarity 3 2.1 embedding algorithms donot use PQ-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 A planarity embedding algorithm based on the Kuratowski theorem . . . . . . . . 3 2.1.2 An embedding algorithm based on open ear decomposition . . . . . . . . . . . . . . 3 2.1.3 A simplified o (n) planar embedding algorithm for biconnected graphs . . ....
متن کاملPlanarity Algorithms via PQ-Trees
We give a linear-time planarity test that unifies and simplifies the algorithms of Shih and Hsu and Boyer and Myrvold; in our view, these algorithms are really one algorithm with different implementations. This leads to a short and direct proof of correctness without the use of Kuratowski’s theorem. Our planarity test extends to give a uniform random embedding, to count embeddings, to represent...
متن کاملAn Efficient Parallel Algorithm for Planarity by Philip
We describe a parallel algorithm for testing a graph for planarity, and for finding an embedding of a planar graph. For a graph on n vertices, the algorithm runs in O(log2 n) steps on n processors of a parallel RAM. The previous best algorithm for planarity testing in parallel polylog time ([Ja'Ja' and Simon, 82]) used a reduction to solving linear systems, and hence required fl(n2 49 ) process...
متن کاملPlanarity Testing and Embedding
Universita’ di Roma Tre 3.1 Properties and Characterizations of Planar Graphs . . . . . 2 Basic Definitions • Properties • Characterizations 3.2 Planarity Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.3 History of Planarity Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.4 Common Algorithmic Techniques and Tools . . . . . ...
متن کاملPC-Trees vs. PQ-Trees
A data structure called PC-tree is introduced as a generalization of PQ-trees. PC-trees were originally introduced in a planarity test of Shih and Hsu [7] where they represent partial embeddings of planar graphs. PQ-trees were invented by Booth and Lueker [1] to test the consecutive ones property in matrices. The original implementation of the PQ-tree algorithms by Booth and Lueker using nine t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Syst. Sci.
دوره 30 شماره
صفحات -
تاریخ انتشار 1985